- полное многообразие
- coplete variety
Русско-английский технический словарь.
Русско-английский технический словарь.
ПОЛНОЕ АЛГЕБРАИЧЕСКОЕ МНОГООБРАЗИЕ — обобщение понятия компактного комплексного алгебраич. многообразия. Многообразие Xназ. полным, если для любого многообразия Yпроекция является замкнутым морфизмом, т. е. переводит замкнутые (в топологии Зариского) подмножества в замкнутые… … Математическая энциклопедия
Полное метрическое пространство — Метрическим пространством называется множество, в котором определено расстояние между любой парой элементов. Содержание 1 Формальное определение 2 Обозначения 3 Примеры … Википедия
ШТЕЙНА МНОГООБРАЗИЕ — голоморфно полное многообразие, паракомпактное комплексное аналитическое многообразие М, обладающее следующими свойствами: 1) для любого компакта множество где алгебра голоморфных функций на М, компактно (голоморфная выпуклость); 2) для любых… … Математическая энциклопедия
КЭЛЕРОВО МНОГООБРАЗИЕ — комплексное многообразие, на к ром можно ввести Кэлера метрику. Иногда такие многообразия на … Математическая энциклопедия
Неприводимое риманово многообразие — риманово многообразие , у которого группа голономии неприводима, т. е. не имеет нетривиальных инвариантных подпространств. Риманово пространство с приводимой группой голономии называется приводимым. Свойства теорема де Рама: Полное односвязное… … Википедия
Дифференцируемое многообразие — Дифференцируемое многообразие топологическое пространство, наделенное дифференциальной структурой. Дифференциальные многообразия являются естественной базой для построения дифференциальной геометрии. На дифференциальных многообразиях… … Википедия
ДИФФЕРЕНЦИРУЕМОЕ МНОГООБРАЗИЕ — локально евклидово пространство, наделенное дифференциальной структурой. Пусть X хаусдорфово топологич. пространство. Если для каждой точки хО X найдется ее окрестность U, гомеоморфная открытому множеству пространства Rn, то Xназ. локально… … Математическая энциклопедия
Абелево многообразие — Абелево многообразие это полное алгебраическое многообразие, являющееся алгебраической группой. Эллиптическая кривая является абелевым многообразием размерности один. При n > 1 абелево многообразие, как топологическое пространство… … Википедия
ДВУМЕРНОЕ МНОГООБРАЗИЕ — топологическое пространство, каждая точка к рого обладает окрестностью, гомеоморфной плоскости или полуплоскости. Д. м. наиболее наглядный класс многообразий: к ним относятся сфера, круг, лист Мёбиуса, проективная плоскость, бутылка Клейна и др.… … Математическая энциклопедия
ПОЛЯРИЗОВАННОЕ АЛГЕБРАИЧЕСКОЕ МНОГООБРАЗИЕ — пара (V,x)> где V полное гладкое многообразие над алгебраически замкнутым полем k,| из Pic V/PicoV класс нек рого обильного обратимого пучка, PicoV связная компонента абелевой схемы Пикара Pic V. В случае, когда V абелево многообразие,… … Математическая энциклопедия
РАЦИОНАЛЬНОЕ МНОГООБРАЗИЕ — алгебраическое многообразие Xнад алгебраически замкнутым полем k, поле рациональных функций k(X)к рого изоморфно чисто трансцендентному расширению конечной степени поля k. Другими словами, Р. м. это алгебраич. многообразие X, бирационально… … Математическая энциклопедия